

Your security dashboard is lying to you: The science of metrics

Aram Hovsepyan

Vulnerability dashboard: are these good metrics?

- Total vulnerabilities
- Risk score

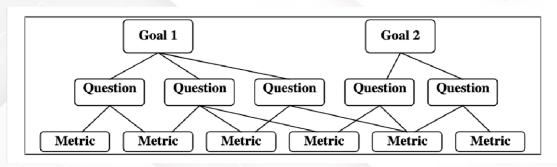
SIEM dashboard: is this a good metric?

Number of security alerts

Outline: how to fail spectacularly with metrics

- Measure and report useless things
- Design bad metrics
- Make sure your metrics math makes no sense
- Dress up bad data as good decisions

Aram Hovsepyan


- PhD in AppSec
- CEO @ Codific
- OWASP SAMM Core team member

https://www.linkedin.com/in/aramhovsep https://appsecscience.com

Metrics purpose: Are these good metrics?

- M1: Number of exploitable vulnerabilities in production
- M2: Impact score of each exploitable vulnerability
- M3: Likelihood score of each exploitable vulnerability

Goal-Question-Metric framework*

Conceptual level

Operational level

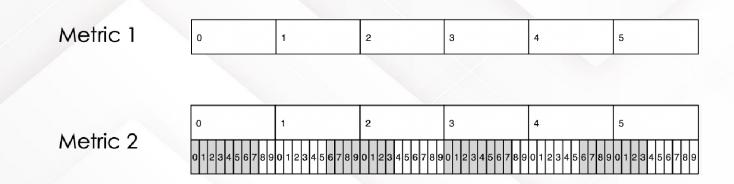
Quantitative level

- G: Improve the time to fix for high-risk vulnerabilities in production
- Q1: How many high-risk vulnerabilities are in production?
- Q2: What is the current mean time to fix?
- Q3: Is the time to fix improving?
- M1: Number of exploitable vulnerabilities in production
- M2: Impact score of each vulnerability
- M3: Likelihood score of each vulnerability
- M4: Time to deploy of each vulnerability fix

Goal-Question-Metric exception

- Qualitative analysis
 - Explore and understand complex phenomena
 - Generate and refine goals

Metrics design: Which metric is better?


- G: Improve security awareness of developers
- Q: What is the current security awareness of developers
- M: Secure code training test results
 - o M1: Pass / fail
 - M2: 0 to 10 score
 - o M3: 0 to 100000 score

Metrics design: Which metric is better?

- G: Reduce the risk of getting breached
- Q: What is the likelihood of getting exploited due to a known vulnerability in production
- M: Vulnerability exploitation likelihood
 - M1: Yes/No based on KEV (list of exploits in the wild)
 - M2: 0.0 to 1 based on EPSS (prediction model)

Metric precision: smallest unit of measurement

- Secure code training test results
 - o M1: Pass or fail
 - M2: Score from 0 to 10

Metric reliability: consistency of measurements

Metric reliability: consistency of measurements

- Vulnerability exploitation likelihood
 - o M1: Known Exploited Vulnerabilities (KEV) score
 - o M2: Exploit Prediction Scoring System (EPSS) score

Precision vs reliability

- Secure coding test results
 - o M1: Pass / fail
 - M2: 0 to 10 score
 - M3: 0 to 100 score
- Five developers with similar levels of security expertise
 - M1: everyone passes
 - M2: 2 devs score 4 out of 10 | 3 devs score 9 out of 10
 - M3: everyone scores 30 out of 100
- Which is the best metric?

Metric validity

• Can **Number of Lines of Code** serve as a good metric to assess security vulnerabilities?

Content validity

- How much of the outcome does the metric cover
- Security awareness of employees
 - M1: Number of hours of training completed
 - M2: Number of top security risks seen during training

Criterion validity

- How well the metric correlates with the outcome
- Security awareness of employees
 - M1: Percentage of top security risks seen during the training
 - M2: Security awareness test score right after the training
 - M3: Security awareness test score a year after the training

Criterion validity revisited

- Five devs with similar levels of **strong** security expertise
 - M1: everyone passes
 - o M2: 2 devs score 4 out of 10 | 3 devs score 9 out of 10
 - M3: everyone scores 30 out of 100
- Which is the best metric?

Construct validity

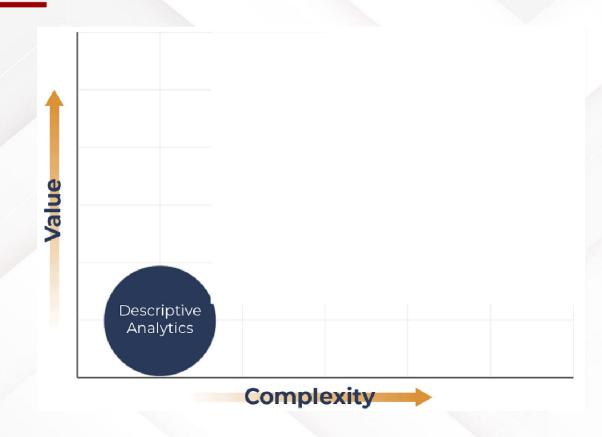
- How well the metric correlates with the concept
- How well are we prepared for an actual cyberattack?
 - M1: Security awareness test score a year after the training
 - M2: Attack simulation exercise scores
 - o M3: Real attack

Metric math: Measurement scales

- Which of the following statements is true?
 - SQL injection is worse than XSS
 - 1 HIGH vulnerability is better than 10 MEDIUM
 - CVSS 10.0 is twice more severe than 5.0
 - \blacksquare AV x AC x PR x UI x C x I x A => 0..10
 - EPSS 1.0 is twice more likely than 0.5
 - Likelihood of an exploit expressed as a percentage => 0..1

Measurement scales

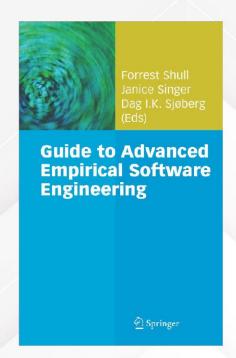
Scale	Examples	Mode	Median	Average
Nominal	Vulnerability types		×	×
Ordinal	Severity levels CVSS scores			×
Ratio	EPSS scores Risk value in \$\$\$			

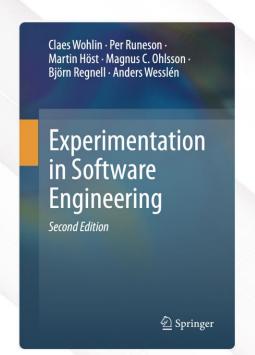

- meaningful operation

X - meaningless operation

ASPM Risk Score

- Risk = CVSS × (1 + EPSS) × (1 + 0.5 × PROD + 0.5 × CLOUD)
 - CVSS = impact score [0..10] *
 - EPSS = likelihood score [0..1]
 - PROD = is production [Yes/No]
 - CLOUD = is internet facing [Yes/No]
- Asset Risk = Average(Risk of top 5% of vulnerabilities)
- Meaningful?
- Userful?


Data analysis techniques



Key takeaways: metrics that don't lie

- Good metrics answer meaningful, not convenient questions
- Good metrics are precise, reliable, valid ... and hard to find
- Bad averages create beautiful lies
- Great dashboards reveal truth, not dress up vanity metrics

Thank you

https://appsecscience.com